
Sistemas e Arquitectura de Computadores Mestrado em Computação Avançada
 Universidade do Minho

André Pereira & Luís Paulo Santos - Out.2025 Página 1

Guião 2
Avaliação do Desempenho: contadores de hardware

Preâmbulo
Este módulo serve vários obje2vos:

• familiarização com o caso de estudo a u2lizar durante o semestre, nomeadamente o GEMM (GEneral
Matrix Mul.ply);

• familiarização com os contadores de eventos dos processadores modernos e com a biblioteca PAPI
(Performance Applica.on Programming Interface), usada para aceder aos mesmos;

• familiarização com as principais métricas usadas para modelação do desempenho (número de
instrução e número de ciclos) e com a es2ma2va do tempo de execução de um programa.

Introdução
A complexidade crescente dos sistemas de computação torna o processo de o2mização do tempo de
execução das aplicações mais diLcil. Para facilitar esta tarefa é necessário medir com exa2dão vários aspetos
da execução do programa. Neste sen2do, os fabricantes de processadores foram introduzindo, ao longo dos
úl2mos anos, contadores de eventos internos ao processador que podem ajudar neste processo de
o2mização. Alguns dos eventos mais frequentes incluem o número de instruções executadas (#I), o número
de ciclos máquina (#CC) e o número de acessos à memória, entre outros.

A biblioteca PAPI (Performance Applica2on Programming Interface) apresenta uma abstração sobre estes
contadores de eventos, através de uma API que facilita a leitura de um conjunto uniforme de eventos nas
diversas arquiteturas.
O comando “papi_avail” permite verificar quais os eventos disponíveis numa dada arquitetura. Exemplos:

• o evento PAPI_TOT_INS contabiliza o número total de instruções executadas (#I);
• o evento PAPI_TOT_CYC contabiliza o número total de ciclos do relógio (#CC).

O conjunto de eventos disponíveis varia com a arquitectura do processador.

Caso de Estudo: Multiplicação de Matrizes

O caso de estudo que iremos seguir é a mul2plicação de matrizes, normalmente
designada por GEMM (GEneral Matrix Mul.ply).
Relembre que a mul2plicação de duas matrizes, 𝐶	 =	 𝐴∗𝐵, implica calcular o
produto interno entre cada linha de A e cada coluna de B. Isto é, cada elemento
Cij (linha i, coluna j) é dado por 𝐶!"	=	∑$#’%(&(𝐴!#	∗𝐵#").
A Figura 1 ilustra este processo. Neste caso de estudo usaremos matrizes
quadradas (número de linhas == número de colunas).

Figura 1 - GEMM

Ligue-se ao front end do Search (ssh s7edu.uminho.pt), copie o ficheiro /share/acomp/GEMM-
P02.zip para a sua directoria e extraia os ficheiros usando o comando unzip (note que será criada uma
pasta P2 onde encontrará os ficheiros relevantes).

Verifique a função de mul2plicação de matrizes em gemm.c. Deve examinar o código da função gemm1() –
as restantes funções des2nam-se a versões op2mizadas a desenvolver no futuro.

Sistemas e Arquitectura de Computadores Mestrado em Computação Avançada
 Universidade do Minho

André Pereira & Luís Paulo Santos - Out.2025 Página 2

Cer2fique-se que percebe bem a razão pela qual temos 3 ciclos:
• o mais externo (índice j), percorre as colunas de C e B
• o ciclo intermédio (índice k), percorre as colunas de A e as linhas de B
• o ciclo mais aninhado (índice i), percorre as linhas de C e A

Verifique a função main() em main.c e note que:

• a função verify_command_line() lê e valida os argumentos da linha de comandos. Estes são
obrigatórios e incluem o número de linhas (ou colunas) das matrizes quadradas e a versão de gemm()
a u2lizar (apenas a versão 1 está implementada nesta fase). Exemplo: para executar o programa numa
matriz com 1024 linhas e usando a versão 1 da função (gemm1()) os argumentos são 1024 1 ;

• o PAPI é inicializado; todos os detalhes estão no ficheiro my_papi.c; este usa essencialmente as
funções associadas à API de alto nível do PAPI, que podem ser consultadas em
hgp://icl.cs.utk.edu/projects/papi/wiki/PAPIC:High_Level ;

• inicialização das matrizes A e B com números pseudo-aleatórios;

• inicialização da matriz C a zero;

• a cache é aquecida, executando a função 1 vez. Note que func() é um apontador para uma das
funções gemm() e foi inicializado quando da leitura da linha de comandos;

• as medições são efetuadas NUM_RUNS vezes para minimizar os efeitos que variações no estado da
máquina possam ter no desempenho. São apresentadas as medições da execução que executou em
tempo mínimo;

• A função MYPAPI_start () inicia a medição do tempo de execução; arranca com os contadores
definidos em Events[] – nesta primeira versão são os eventos PAPI_TOT_CYC e PAPI_TOT_INS;

• a função – func() – é executada;

• MYPAPI_stop () mede o tempo de execução e lê os contadores; adicionalmente vai calculando
quais as leituras correspondentes à execução mais rápida;

• MYPAPI_output () apresenta os resultados;

• é calculada a mul2plicação de matrizes usando uma versão de referência da função gemm() e o
resultado comparado com o que foi calculado anteriormente para verificar da correção do código.

Sistemas e Arquitectura de Computadores Mestrado em Computação Avançada
 Universidade do Minho

André Pereira & Luís Paulo Santos - Out.2025 Página 3

Exercício 1 - Construa o executável:

 > make

Verifique o ficheiro Makefile. Verá que esta compilação foi feita sem op2mizações (CCFLAGS = -O0)
Submeta o programa para execução. A função a usar é gemm1() e matrizes com 1024 linhas, isto é:

> sbatch gemm.sh 1024 1

O sbatch indica qual o ID do job criado. Aguarde que o ficheiro de output do SLURM (gestor de filas do
Search) seja criado; esse ficheiro terá o nome slurm-<ID do job>.out. Pode verificar o estado do seu
job escrevendo

> squeue –u <username>

Repita a execução algumas vezes e verifique que o tempo de execução, número de instruções e número de
ciclos de relógio variam apesar de estarmos a repe2r a execução da função NUM_RUNS vezes. Isto deve-se a
variações no estado da máquina, incluindo a frequência do relógio (que é variável), interrupções para
execução de outros processos e o estado da hierarquia de memória. Se necessário, execute o programa
algumas vezes e considere as medições para o menor tempo de execução reportado.

Avaliação do Desempenho

Exercício 2 - Anote o tempo de execução, o número de ciclos do relógio e o número de instruções executadas
para matrizes com n = 256, 512 e 1024, sendo n o número de linhas. O tempo de execução e o número de
ciclos podem variar para diferentes execuções, mas o número de instruções (#I) executadas só depende do
programa e do tamanho do problema (n).
Neste exercício é-lhe pedido que vá duplicando o número de linhas. Como é que #I varia com n? Também
duplica ou varia mais rapidamente? Consegue calcular aproximadamente qual a taxa de variação?

#𝐼∗𝐶𝑃𝐼
 𝑇	=	 𝑓	 =	#𝑐𝑐⁄𝑓

Equação 1 - Modelo de desempenho

Exercício 3.1 - A Equação 1 apresenta o modelo de desempenho proposto nas aulas. Pretende-se que
modifique o seu programa de forma a calcular e reportar o CPI (Ciclos Por Instrução) e o CPE (Ciclos Por
Elemento) e o tempo de execução es2mado por este modelo.
Encontrará na função MYPAPI_output() (ficheiro my_papi.c) um comentário indicando onde fazer esses
cálculos. As variáveis float CPI, CPE já se encontram declaradas. Existe também a variável global
total_elements, com o número de elementos da matriz C. Imprima o CPI e CPE com uma única casa
decimal (%.1f).
Exercício 3.2 – Sabendo que a frequência do relógio dos processadores das máquinas que está a usar é 2.6
GHz (2.6 * 109 Hz) calcule o tempo de execução es2mado pela equação 1 para os diferentes tamanhos das
matrizes.
Preencha agora a primeira secção da Tabela 1 (linhas correspondentes a –O0).
Na secção de conteúdos da plataforma de elearning descarregue a folha de cálculo GEMM-results. Preencha o Texec, CPI e #I
correspondentes a gemm1 –O0 para n=1024. Mantenha esta folha de cálculo para a reuOlizar ao longo do semestre.

Sistemas e Arquitectura de Computadores Mestrado em Computação Avançada
 Universidade do Minho

André Pereira & Luís Paulo Santos - Out.2025 Página 4

Exercício 3.3 – Consultando os valores que preencheu na Tabela 1 responda às seguintes questões: a) Que

conclui da precisão do modelo teórico usado para es2mar o tempo de execução?

b) Como explica que o CPI possa ser menor do que 1?

c) E a que se devem as variações no valor do CPE?

Exercício 4.1 – Modifique o ficheiro Makefile de forma a que seja usado o nível de o2mização –O2 (bastará
re2rar o comentário na definição apropriada de CCFLAGS e comentar as restantes).
Construa o executável. Note bem que não basta usar o comando make; de facto, como os ficheiros de código
C não foram alterados desde a úl2ma compilação o make comunicará que nada há a fazer. É necessário apagar
o executável bem como eventuais ficheiros de código objeto que entretanto tenham sido gerados. Use a
sequência de comandos:

 > make clean
 > make

Preencha agora a segunda secção da mesma tabela, bem com a linha correspondente a gemm1 –O2 para
n=1024 na folha GEMM-results.

 linhas Tempo medido
(usec) #CC #I CPI Tempo es6mado

(usec) CPE

-O0
256
512

1024
 linhas Tempo medido

(usec) #CC #I CPI Tempo es6mado
(usec) CPE

-O2
256
512

1024
Tabela 1 - Tabela de medições

Exercício 4.2 – Comparando os valores que preencheu na Tabela 1 para as duas versões do programa,
responda às seguintes questões:
a) Houve ganhos no tempo de execução? A que se devem, isto é, como variam o número de instruções

executadas e o CPI?
b) Compare o CPE das duas versões. A que se deverá a redução do número de ciclos necessário para

processar cada elemento da matriz?

Uma o2mização comum feita pelo compilador é a redução do número de acessos à memória para ler ou
escrever dados, recorrendo a uma u2lização mais intensiva e eficaz dos registos. O processador usado não
permite a contagem direta do número de acessos à memória, mas é possível contar o número de instruções
de leitura da memória (loads – PAPI_LD_INS) e instruções de escrita na memória (stores – PAPI_SR_INS).

Exercício 5 – Altere a função main() para que passe a medir também estes eventos (basta alterar
NUM_EVENTS e acrescentar estes eventos em Events[]).
Execute o programa o2mizado e não o2mizado para matrizes de 256 linhas e comente o que observa
rela2vamente ao número total de acessos à memória.

